


MOBILE API SECURITY: Using Keys and Tokens

INTRODUCTION

Mobile apps commonly use APIs to interact with backend services and information. In 2016, time
spent in mobile apps grew an impressive 69% year to year, reinforcing most company's
mobile-first strategies, while also providing fresh and attractive targets for cybercriminals. As an
API provider, protecting your business assets against information scraping, malicious activity, and
denial of service attacks is critical in maintaining a reputable brand and maximizing profits.

Properly used, API keys and tokens play an important role in application security, efficiency, and
usage tracking. Though simple in concept, API keys and tokens have a fair number of gotchas to
watch out for.

CHAPTER 1
We'll start off with a very simple example of API key usage and iteratively enhance its API
protection.

CHAPTER 2

We will move from keys to JWT tokens within several OAuth2 scenarios

CHAPTER 3

We will remove any user credentials and static secrets stored within the client and, even if a
token is somehow compromised, we can minimize exposure to a single API call.

© 2022 CriticalBlue Limited. All rights reserved. v3.1

https://www.flickr.com/photos/138382953@N08/31415282864/in/dateposted-public/
https://www.approov.io/blog/theres-a-fake-app-for-that.html


MOBILE API SECURITY: Using Keys and Tokens

Mobile apps commonly use APIs to interact with backend services and information. In 2016, time
spent in mobile apps grew an impressive 69% year to year, reinforcing most company's
mobile-first strategies, while also providing fresh and attractive targets for cybercriminals. As an
API provider, protecting your business assets against information scraping, malicious activity, and
denial of service attacks is critical in maintaining a reputable brand and maximizing profits.

Properly used, API keys and tokens play an important role in application security, efficiency, and
usage tracking. Though simple in concept, API keys and tokens have a fair number of gotchas to
watch out for.

START WITH A SIMPLE APP ID KEY

The simplest API key is just an application or developer ID string. To use an API, the developer
registers his application with the API service and receives a unique ID to use when making API
requests.

© 2022 CriticalBlue Limited. All rights reserved. v3.1

https://www.flickr.com/photos/138382953@N08/31415282864/in/dateposted-public/
https://www.approov.io/blog/theres-a-fake-app-for-that.html


MOBILE API SECURITY: Using Keys and Tokens

In the sequence diagram, the client is a mobile application. The resource owner is the application
user, and a resource server is a backend server interacting with the client through API calls. We
will use OAuth2 terminology as much as possible.

With each API call, the client passes the API key within the HTTP request. It is generally
preferred to send the API key as part of the authorization header, for example:

authorization: key some-client-id

URLs are often logged, so if the API key is passed as a query parameter, it could show up in
client logs and be easily observed, as demonstrated by this past Facebook vulnerability.

This initial API key approach offers some basic protection. Any application making an API call will
be rejected if the call does not contain a recognized ID. Different applications with different keys
could also have different permission scopes associated with those keys; for example, one app
could have read-only access while another may be granted administrative access to the same
backend services.

Keys can be used to gather basic statistics about API usage such as call counting or traffic
sourcing, perhaps rejecting calls from non-app user agents. Importantly, most API services use
calling statistics to enforce rate limits per application to provide different tiers of service or reject
suspiciously high frequency calling patterns.

One obvious weakness with this simple approach is that the API call and key are passed in the
clear. A man in the middle attack could successfully modify any API call or reverse engineer the
API and use the observed API key to make its own malicious API calls. The compromised API
key cannot be blacklisted without breaking existing application instances and requiring an
upgrade of the entire installed base.

SECURE THE COMMUNICATION CHANNEL

Transport Level Security (TLS) is a standard approach to securing an HTTP channel for
confidentiality, integrity, and authentication. With mutual TLS, client and server exchange and
verify each other’s public keys. With certificate pinning, the client and server know which public
keys to expect, and they compare the actual exchanged keys with the expected ones, rather than
verifying through a hierarchical chain of certificates The client and server must keep their own
private keys secure. Once the keys are verified, the client and server negotiate a shared secret,
message authentication code (MAC), and encryption algorithms.

When running on an uncompromised mobile device, client traffic over TLS is reasonably safe
from man in the middle attacks. Unfortunately, if an attacker can install your client application on
a device he controls, he can use a packet sniffer to observe the public key exchange, and use
that knowledge to decrypt the channel to observe the API key and reverse engineer your APIs.
While he may not be able to observe traffic on other clients, he can now create his own malicious
app, freely calling your API over a TLS-secure channel. So even when using TLS, you’ll need
additional security to prevent APIs called from unauthorized applications.

© 2022 CriticalBlue Limited. All rights reserved. v3.1

https://oauth.net/2/
https://techcrunch.com/2012/04/10/security-hole-spotted-in-facebook-android-sdk-long-tail-apps-may-still-be-unpatched/
https://owasp.org/www-community/attacks/Manipulator-in-the-middle_attack
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://www.codeproject.com/Articles/326574/An-Introduction-to-Mutual-SSL-Authentication
https://www.owasp.org/index.php/Pinning_Cheat_Sheet


MOBILE API SECURITY: Using Keys and Tokens

PREVENT API CALL TAMPERING

One of the first improvements we can make is to separate the API key into an ID and a shared
secret. As before, the ID portion of the key is passed with each HTTP request, but the shared
secret is used to sign and/or encrypt the information in transit.

To ensure message integrity, the client computes a message authentication code (MAC) for each
request using the shared secret with an algorithm such as HMAC SHA-256. Using the same
secret, the server computes the received message MAC and compares it with the MAC sent in
the request.

Though the secret is known by both client and server, that secret is never present in the
communication channel. An attacker might somehow see the ID, but without the secret, he
cannot properly sign the request. As it stands, an attacker can still deny or replay the request, but
he cannot alter it. Examples built around this scheme include the HAWK HTTP authentication
specification or the Amazon S3 REST API signing and authorization scheme.

To further protect critical information from being observed, all or portions of a message can be
encrypted before signing using key material derived from the shared secret.

SECURE THE SECRETS

We are starting to accumulate secrets on the client. We have the shared API secret and the
client’s private TLS key.

© 2022 CriticalBlue Limited. All rights reserved. v3.1

https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://github.com/hueniverse/hawk
http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html


MOBILE API SECURITY: Using Keys and Tokens

In its basic form, a secret will be a static constants with the installed application package using
developer-friendly names like SHARED_SECRET. It won’t take a junior hacker much time to
extract that constant, and once he has it, your backend is compromised. As a first step, use code
obfuscators, to make it harder to locate and extract a secret constant. To go a bit further, consider
encoding a static secret in some computationally simple way, cut that encoding into small
segments, and distribute them around the binary. Reassemble and decode the secret in memory
as needed; never save it in persistent storage.

Though the public keys are not actually secrets, you want to obfuscate them as well. Their values
can be observed, so if they are not obfuscated, they can be easily found and changed, making it
easy to disable or spoof back-end traffic.

Regardless of your efforts, it is not a matter of if a secret will be stolen, but if the time and effort to
steal it is worth the return. Make it as difficult as you can afford. If an API secret is stolen, we
have the same revocability issues as before; all app instances will be compromised until we
upgrade the entire installed base with a new secret and a new technique to obscure it.

We will return to this challenge again in Chapter 2, when we discuss approaches which remove
the secret from the app altogether.

HANDLE USER CREDENTIALS

We have enhanced API security using application keys, but we have not considered how to
handle user credentials.

Starting simple, a client requests a user to provide user ID and password. Using basic access
authentication, the client encodes and passes the credentials to the server which verifies them. If
the credentials are valid, the server can start a user session and return a user session key.
Multiple authentications using the same credentials should always return different key strings.

© 2022 CriticalBlue Limited. All rights reserved. v3.1

http://stackoverflow.com/questions/14570989/best-practice-for-storing-private-api-keys-in-android
http://stackoverflow.com/questions/14570989/best-practice-for-storing-private-api-keys-in-android
https://www.approov.io/blog/simple-app-authentication.html
https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/Basic_access_authentication


MOBILE API SECURITY: Using Keys and Tokens

Like we saw for application keys, we can use user keys to gather statistics and set authorization
levels, but now we can do it with user granularity. Assuming we are using both app and user
keys, the authorization levels for a user will be a function for both app and user; for example, a
user may have administrative authorizations on one app while having only read permission on a
different app, even though they are talking to the same backend server.

© 2022 CriticalBlue Limited. All rights reserved. v3.1



MOBILE API SECURITY: Using Keys and Tokens

Similar to when using HTTP cookies, session state likely must be maintained on the server. This
may decrease server scalability, and if multiple servers can handle a user request, session data
must be synchronized between them. We’ll address this with user tokens in Chapter 2.

So far, our application keys are static and therefore have infinite lifetimes. By contrast, user keys
are created on the server, and they can and should expire. When a user key expires, the user
must reauthenticate to continue making API calls, and session state is lost. Users do not like to
logon repeatedly, so a policy decision needs to be made on key lifetimes. The longer the lifetime,
the more user convenience, but if a user key should be compromised, it could be used
maliciously for a longer time as well.

If a key can last longer than an application instance, then it must be stored in persistent storage
on the client between app invocations. This is inherently less secure than if the key only exists in
memory. Use secure storage such as Keychain Services for IOS and consider
SharedPreferences for Android.

Unlike an application key, a user key can be revoked without breaking installed applications.

SUMMARY

We started off with a very simple example of API Key usage and iteratively enhanced its API protection to
secure the communication channel and authorize both clients and users using API keys. In Chapter 2,
we will move from keys to JWT tokens within several OAuth2 scenarios, and in our final chapter,
we will remove any user credentials and static secrets stored within the client and, even if a token
is somehow compromised, we can minimize exposure to a single API call.

© 2022 CriticalBlue Limited. All rights reserved. v3.1

https://en.wikipedia.org/wiki/HTTP_cookie
https://developer.apple.com/library/content/documentation/Security/Conceptual/keychainServConcepts/01introduction/introduction.html#//apple_ref/doc/uid/TP30000897-CH203-TP1
https://developer.android.com/reference/android/content/SharedPreferences.html


MOBILE API SECURITY: Using Keys and Tokens

For all following scenarios, we assume that TLS techniques are used to keep the
communications channel secure and we will use OAuth2 terminology as much as possible.

At the end of Chapter 1, we used basic access authentication to verify user credentials and start
a user session on a server. If authentication succeeds, the server returns a session key to the
client. The client adds the session key to API calls, and the server checks that the session key is
currently valid and uses it as a key to look up any session state it is storing for the client.

SWITCH TO AN AUTHORIZATION TOKEN

OAuth2 has become a popular way to authorize user access to protected resources. The OAuth2
authorization framework defines several authorization grant flows. Though most service providers
follow the spirit of the specifications, they often choose to implement just a part of the full
specifications or sometimes implement capabilities differently than specified.

The OAuth2 flow which most closely resembles basic access authentication is called resource
owner password credentials grant. In this flow, the mobile client directly obtains the resource
owner’s id and password credentials and passes them to its back-end resource server. The
back-end server validates the credentials, and returns an access token to the client.

© 2022 CriticalBlue Limited. All rights reserved. v3.1

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://oauth.net/2/
https://tools.ietf.org/html/rfc2617
https://oauth.net/2/
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749


MOBILE API SECURITY: Using Keys and Tokens

The returned access token looks just like a session key, and it is used by the client in the same
way; the access token is provided in any http request requiring authorization to make an API call.
As with basic access authentication, the access token stands in for the resource owner’s
credentials, so once the client has received an access token, the client should discard the
credentials. The resource owner must trust that the client is not retaining these credentials.

Where an access token differs from a session key is in how the token is interpreted. JSON Web
Tokens (JWT) are a secure, URL-safe method for representing claims and are often used as
OAuth2 access tokens. The JWT.io site provides a convenient place to experiment with tokens.

A JWT contains a JSON formatted payload describing a set of claims. Common claims include:

● “iss” - identifies who issued the token

● “sub” - the principal subject of the claims, often the resource owner

● “aud” - the intended audience for the claims, often the resource server

● “exp” - the expiration timestamp of the claims

The access token is also called a bearer token and is passed with every API call, typically as an
HTTP request header:

© 2022 CriticalBlue Limited. All rights reserved. v3.1

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://jwt.io/


MOBILE API SECURITY: Using Keys and Tokens

Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJte
V9pc3N1ZXIiLCJzdWIiOiJteSByZXNvdXJjZSBvd25lciIsI
mF1ZCI6Im15X3Jlc291cmNlX3NlcnZlciIsImFkbWluIjp0c
nVlLCJleHAiOjExODMzODYyNDAwfQ.Vznz1O-57b42Y8
el6wmuUY6EVUSwBjQp4lsZNw8TvVI

There are different ways that the token can be validated by the resource server. One common
approach is to sign the JWT token using a secret known to both the resource server and the
authorizing service, which in this case is the resource server itself. An attacker cannot modify a
token’s claims without invalidating the signature. The client can read the claims if necessary, but
it does not know the secret, so it cannot verify the token itself. Neither the user credentials nor
the signing secret are stored on the client, so they cannot be extracted through reverse
engineering the application.

The server can validate the signature and check that the claims have not expired. With basic
access authentication, the session key is used to retrieve state stored in the back end. If there
are multiple servers which can service a request, then accessing this state and synchronizing it
between servers can be a performance bottleneck. With access tokens, authorization state, such
as the subject, is stored on the client, and that state is provided with every call. If the client
maintains and provides the equivalent of all session state with every call, then the API protocol is
stateless, and any server is free to handle a request independently of other servers, greatly
improving system scalability.

Since the signing secret is not stored on the client, the secret can be changed on the server
without requiring changes to the client. Access tokens are valid until they expire, so if the
expiration window is long, a stolen token could be used successfully by an attacker for quite a
while. If suspicious behavior is suspected, a token can be blacklisted on a group of servers. A
revoked token will fail validation, triggering a new password credential sequence for the resource
owner.

SEPARATE USER AUTHORIZATION FROM SERVICE

Security can be enhanced if resource authorization is separated from resource access. If
separated, then only the authorization server needs to handle user credentials. The user
credentials are never exposed to the client or the resource server.

In OAuth’s implicit grant type, the authorization and resource servers are separated. The client
sends the resource owner, through redirection, to the authorization server’s website. The local
user-agent, usually a browser, separate from the client, submits the credentials. The
authorization server validates the credentials and redirects the access token through the user
agent and back to the client.

© 2022 CriticalBlue Limited. All rights reserved. v3.1



MOBILE API SECURITY: Using Keys and Tokens

Along with the user credentials, the authorization server can receive a client identifier and a
requested scope. The authorization server can use the resource owner’s id, the client’s id, and
the requested scope to determine which resources the client is allowed to access and how the
client can access or modify those resources. A single authorization server can therefore manage
the security policies for many users across many clients and many resources.

In the implicit grant type flow, the user is sent via redirect to the auth provider’s web site, the user
submits credentials, the auth provider verifies them for your app, and then the provider redirects
back to your web application. The access token is directly passed in the URL #hash and can be
extracted with a little JavaScript code. As the client is not able to keep a secret, there is none.
Also, there is no such thing as a refresh token; the client web app will have to ask for a new
token.

Access tokens passed from client to resource server can be verified by the resource server using
the same secret used to sign them. Both authorization and resource servers share this secret,
but this secret is never exposed to the client or user agent. A separate system administrates user
credentials, client ids, resource access scope, and shared secrets.

This grant type is considered implicit because the resource server implicitly trusts that the
requester submitting the access token is the client. This can be a risky assumption. For example,
if an attacker can compromise the user-agent, the attacker may be able to view the access token
and subsequently use the token to make valid but malicious API calls.

© 2022 CriticalBlue Limited. All rights reserved. v3.1



MOBILE API SECURITY: Using Keys and Tokens

AUTHENTICATE THE APP, NOT JUST THE USER
The authorization grant type adds client app authentication to the implicit flow.

Authorization is split into two steps. In the first step, the resource owner provides credentials
through the user agent, but this time only an authorization code is returned to the client. The
client calls back to the authorization server with the authorization code and an authentication
secret. The authorization server then returns the access token directly to the client.

By separating the authorization process into two steps, the access token does not flow through
the user agent which is a big improvement in security. If the authorization code is exposed by the
user agent, an attacker cannot make use of that code unless he can authenticate himself using
the client secret.

As we know from Chapter 1, a static secret stored on the client is hard to hide from a determined
attacker. We will discuss how to remove static secrets from the client shortly.

The OAuth2 spec does not require client app authentication beyond the authorization flow, but
ideally both user access, through the access token, and app access, through the client secret,
should be sent with each API call. The resource server should validate both before allowing
access to resources.

© 2022 CriticalBlue Limited. All rights reserved. v3.1



MOBILE API SECURITY: Using Keys and Tokens

SHORTEN TOKEN LIFETIMES

One great thing about access tokens is that they have an expiration date. If they are somehow
exposed, they are only useful for a limited amount of time. Since the resource owner has to enter
his credentials each time to get a token, if lifetimes are short then users will get annoyed at
having to repeatedly reauthenticate. Conversely, if lifetimes are long, an exposed token can do a
lot of damage before it expires. A token suspected of being stolen can be revoked, but this will
not undo any damage which occurred before detection.

With the authorization grant type, OAuth2 optionally allows the use of refresh tokens. A refresh
token can be received along with an access token during the initial authorization grant. Now an
access token can be given a short expiration window, and when it expires, the refresh token can
be sent to receive a fresh access token.

Refresh tokens have longer lifetimes than access tokens. The resource owner will not need to
reauthenticate until the refresh token expires. If an access token is compromised, then its
malicious use is limited to a short time. If a refresh token is compromised, it has a longer lifetime
and can be used to generate additional access tokens. As such, refresh tokens are usually
subject to strict storage requirements to ensure they are not leaked. They can also be blacklisted
by the authorization server, which will trigger a new resource owner credentials session. I

© 2022 CriticalBlue Limited. All rights reserved. v3.1



MOBILE API SECURITY: Using Keys and Tokens

strongly recommend authenticating the client app during any refresh token operation, but this is
not required by the OAuth2 spec.

With each refresh, in addition to the new access token, a new refresh token can also be sent.
The old refresh token can be immediately blacklisted, or more complicated token rotation
schemes can be used to frustrate the malicious use of any individual token.

REMOVE THE CLIENT SECRET

The client secret should be used to authenticate the client app for:

● initial access token grant
● every access token refresh
● every API call

Many people do not send the client secret with every API call, arguing that since the client was
authenticated using the secret during the authorization token grant, it is redundant. I prefer to
include it as one additional check so you authenticate that it is still the client who is using the
access token.

Unfortunately, the client secret is statically stored in the client app, and as such, it is vulnerable.
We can remove the static secret from the app by following a playbook similar to how OAuth
removes the resource owner’s credentials from the client, by delegating to an app authentication
service. In this case, the client must present its app credentials to the authentication service, the
service authenticates the app, and the client receives its own authentication token. Instead of
authorizing user access to the resources, this token authorizes client access to the resources.

An app authentication service uses the unique characteristics of the client app to attest the app’s
integrity and authenticity. An example of a unique characteristic might be a simple hash of the
application package. The integrity of this simple attestation depends on the integrity of the
hashing computation. Such a simple scheme might be fairly easy to spoof.

© 2022 CriticalBlue Limited. All rights reserved. v3.1



MOBILE API SECURITY: Using Keys and Tokens

A more robust attestation service might use a random set of high-coverage challenges to detect
any app replacement, tampering, or signature replay. An example of this type of service is
Approov. If the responses satisfy the challenges, the authentication service returns an
authenticating, time-limited client integrity token signed by the client secret. The token can be
verified by the resource server, which also knows the client secret. If the attestation fails, the
service still returns a time-limited token, but it will fail to be verified by the resource server. The
attestation service and the resource server share the client secret, but it is no longer stored in the
client.

With every API call, both the client integrity token and the OAuth2 access token are sent in the
request headers. The resource server is modified to validate both tokens before handling the
request.

Unlike user authentication, client authentication requires no user interaction, so client integrity
token lifetimes can be extremely short, and no refresh tokens are needed.

Since the client secret is no longer stored in the app, if the client secret is somehow exposed, it
can be replaced with a fresh secret without requiring any changes to the installed client base.

© 2022 CriticalBlue Limited. All rights reserved. v3.1

https://approov.io/


MOBILE API SECURITY: Using Keys and Tokens

The initial authorization grant flow must be modified to add app authentication. Since the grant
spec requires a static client secret, a mediation server is introduced. The client authenticates
itself with the app authentication service and receives a client integrity token. As before, it
receives an authorization code from the resource owner’s authentication. It sends both to the
mediation server. If the client integrity token is valid, the mediator sends the authorization code
and the client secret to the authorization server which returns the user access token which is then
returned to the client, to be used for subsequent API calls until a new user access token is
needed.

To refresh the user access token, the same mediation server can be used. This time if the client
integrity token is valid, the refresh token is passed on to the authorization server and if valid, a
fresh user access token is returned. Even though user access token refresh does not require app
authentication, we were able to strengthen the refresh checks by adding the client integrity token
validation to the mediator.

Using this approach, we are able to protect every API call made to our resource server validating
both user and app authenticity, and we did it all without exposing user credentials or the client
secret to the client itself.

© 2022 CriticalBlue Limited. All rights reserved. v3.1



MOBILE API SECURITY: Using Keys and Tokens

In this chapter, we discuss several attacks on OAuth2 authorization grant flows and common
mitigations for them. We finish by extending the authorization mediator pattern introduced in
Chapter 2 to offer best practice security, while adapting to less secure Oauth2 implementations.

THE BASIC OAUTH2 AUTHORIZATION GRANT FLOW

Here’s the basic OAuth2 authorization grant flow:

Authorization is a two step process. In the first step, the client delegates to a user agent, usually
a browser. Through the user agent, the user as resource owner approves the client and presents
credentials to an authentication server. The server returns an authorization code which is
redirected back to the client. In the second step, the client authenticates itself and presents the
authorization code back to the authorization server which, if satisfied, returns an access token.

© 2022 CriticalBlue Limited. All rights reserved. v3.1



MOBILE API SECURITY: Using Keys and Tokens

OAuth2 had a rather drawn out specification phase, and as a result, implementations vary
between different service providers. Some optional features and newer extensions, which we’ll
describe below, have become important in preventing attacks which exploit the authorization
grant flow.

For all scenarios, we assume that TLS techniques discussed in Chapter 1 are used to keep the
communications channels secure.

SPECIAL CONSIDERATIONS FOR MOBILE CLIENTS

OAuth2 distinguishes between public and confidential clients. A confidential client is able to
protect a secret, while a public client cannot make that guarantee. The original OAuth2 spec,
RFC6749, recommended that only confidential clients use the authorization grant flow, which
uses a client secret for authentication, and allows the use of refresh tokens. Since public clients
cannot protect a secret, they must use an implicit grant flow which does not authenticate the
client nor allow refresh tokens.

OAuth2 considers mobile apps to be public clients. Despite RFC6749’s recommendations, most
authorization service providers elected to implement the authorization grant flow for their mobile
apps, and recent IETF drafts for native OAuth2 clients now appear to require such an
authorization grant flow. This provides the user convenience of refresh tokens but at greater risk
unless an alternative to client secrets is used for client authentication.

I KNOW YOUR SECRET

Consider a straightforward authorization grant implementation. It relies on a client id, client
secret, and, optionally, a fixed set of redirect URIs shared between client, authorization server,
and resource server. As these are all static values within the client app, they cannot be
considered secure. If an attacker reverse engineers these values, it is a simple matter to
construct a fake app which looks both cosmetically genuine and which appears perfectly
authentic to the OAuth2 authorization grant flow. As There’s a Fake App for That suggests, there
are plenty of these apps causing mischief in the app stores.

In Chapter 2, we discussed removing the client secret and replacing it with a dynamic attestation
service.

© 2022 CriticalBlue Limited. All rights reserved. v3.1

https://www.oauth.com/oauth2-servers/background/
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/draft-ietf-oauth-native-apps-08
https://www.approov.io/blog/theres-a-fake-app-for-that.html


MOBILE API SECURITY: Using Keys and Tokens

In this flow, an authorization mediator checks the attestation service client integrity token for the
authorization service. We will expand on this pattern later.

A dynamic attestation service, such as Approov, provides extremely reliable positive
authentication of untampered apps. Being dynamic, this service authenticates the app during
both phases of the authorization grant flow as well as frequently during authorized operation. As
a result and without relying on client secrets, every authorized API call is made by an authentic
app for an authorized user.

I SEE YOUR AUTH CODE

Several attacks on grant authorization involve observing the authorization code. One approach
relies on modifying the redirect URI which is used to redirect the authorization code back through
the user agent to the client. The modified URI returns the authorization code to a malicious client
instead. Client administrators optionally register a whitelist of redirect URIs with the authorization
service to prevent this.

© 2022 CriticalBlue Limited. All rights reserved. v3.1

https://www.approov.io/


MOBILE API SECURITY: Using Keys and Tokens

With mobile apps, things are more complicated. Mobile app redirect URIs typically use a custom
URI scheme. For example, the URI

com.example.awesome:/redirect/here

might redirect from a mobile browser to example.com’s awesome application running on the
same device. These schemes must be registered with the operating system, and multiple
applications can register against the same scheme. So even though the URI is preregistered with
the authorization server, there is no guarantee that the correct application will receive the
redirection.

With optional or exploitable static secrets, a malicious app could successfully convert the
redirected authorization code into access and refresh tokens and start accessing the resource
server. Imagine launching a real banking app, granting your permissions, presenting login
credentials, and then wondering why your app seems stuck. While you are waiting, your
authorization code has been stolen, and a malicious app is making API calls to empty your bank
account.

CODE EXCHANGE  PROTECTION
To mitigate authorization code interception scenarios, the Proof Key for Code Exchange (PKCE)
extension was added as a requirement for OAuth2 public clients.

When using the PKCE extension, the client creates a cryptographically random code verifier key
when initiating authorization. Two parameters, a code challenge and a code challenge method,
are added to the initial client authorization request. For the “plain” method, the code challenge
value is the same as the code verifier key value, and the code challenge method is a simple
comparison.

When receiving the request, the authorization server notes the code verifier challenge and
method and returns the authorization code as usual.

To convert the received authorization code to a token, the client must present its original code
verifier along with the authorization code. Using the code challenge method, comparison for the
plain case, the server will validate the code challenge before returning valid access and refresh
tokens.

So even if a malicious client observes or receives the authorization code, it will be unable to
present the correct code verifier to the authorization server.

If the authorization server wishes to remain stateless, it is acceptable for the server to
cryptographically encode the code challenge and code challenge method into the authorization
code itself.

Though the plain code challenge method is the default, it is really only for backward compatibility
with initial implementations. The plain method fails if the attacker can observe the initial client
request, which includes the code verifier in the clear.

© 2022 CriticalBlue Limited. All rights reserved. v3.1

https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7636


MOBILE API SECURITY: Using Keys and Tokens

An alternative and preferred challenge method is “S256”. With S256, the code challenge is a
base 64 encoding of the SHA2 256 bit hash of the code verifier plain text.

Since the SHA2 transformation is practically irreversible, even if the code challenge is observed
by the attacker, he cannot provide the original plain text code verifier required to obtain the
access code.

DYNAMIC ATTESTATION PROTECTION
If PKCE is not implemented, dynamic attestation provides pretty good defense against hijacked
authorization codes. Using the dynamic attestation flow above, whichever app receives the
authorization code must properly attest in order to convert the authorization code into an access
token. Assuming that only one instance of the authentic app can be running on the device, then
only that authentic app will be able to convert the authorization code successfully.

It is possible that the malicious app could store the hijacked code and try to use it later or even
pass the authorization code off device. Since it can only convert the authorization code to an
access token from an attested client, it must take control of that client somehow and is limited to
normal API call sequences through that client. Authorization code expiration times, device
fingerprinting, and replay defenses can be added to frustrate these attacks.

THE EXTENDED AUTHORIZATION MEDIATOR

We introduced an authorization mediator in Chapter 2 to adapt the authorization grant flow to use
a dynamic attestation service. This moved the vulnerable shared secret off the client and
provided a reliable positive authentication approach without requiring any changes to the existing
OAuth2 authorization service.

One of the challenges we alluded to earlier was the variety of inconsistent OAuth2 service
implementations. Each service may ignore some required elements and/or require some optional
ones. Implementations may also add some capabilities, like PKCE, over time.

If you want to directly interface with an authorization service, you are bound to whatever security
policy it implements. As native apps are public, a “lite” implementation could be very insecure.

If you want to directly interface with multiple authorization services, then your client authorization
library/SDK will grow and become difficult to manage. Any policy changes will require app
updates.

Alternatively, if you use an authorization mediator, you can implement a single strong
authorization policy between client and mediator, while the mediator itself can bridge to whatever
policies are required by different OAuth2 authorization services. A consistent, best practice
authorization policy is used by the public clients, where it is most needed, while the often weaker
authorization provider policies are used in private behind the authorization mediator.

© 2022 CriticalBlue Limited. All rights reserved. v3.1



MOBILE API SECURITY: Using Keys and Tokens

Service policy upgrades and additional service providers can be added at the mediator without
requiring client upgrades.

If using a dynamic attestation service, the mediator could be used as a front end to both
authorization and resource servers. For resource servers, it would filter out any invalid client
requests before they hit the backend resource servers. This mediator could be integrated with
existing WAF or API gateway solutions.

Using this approach, we are able to protect every API call made to our resource servers
validating both user and app authenticity, independent of the capabilities of the authorization
service used.

CONCLUSION

In Chapter 1, we demonstrated use of client secrets and basic user authentication to protect API
usage. In Chapter 2, we introduced JWT tokens and described several OAuth2 user
authentication schemes. On mobile devices, static secrets are problematic, so we replaced static
secrets with dynamic client authentication, again using JWT tokens. Combining both user and
app authentication services provides a robust defense against API abuse. In Chapter 3, we
discussed a few threat scenarios and extended the authorization mediator to provide strong
authorization regardless of the strength of the supported OAuth2 providers.

© 2022 CriticalBlue Limited. All rights reserved. v3.1

https://www.owasp.org/index.php/Web_Application_Firewall
http://microservices.io/patterns/apigateway.html


MOBILE API SECURITY: Using Keys and Tokens

ABOUT THE AUTHOR

Skip Hovsmith is a developer and customer advocate at CriticalBlue focusing on
Mobile API Security.

CriticalBlue is a well-established part of the Edinburgh technological scene. We
launched Approov to help our customers protect the business value that flows
through their API channels. With Approov you control which apps access your
mobile API in a secure and easily deployable manner.

© 2022 CriticalBlue Limited. All rights reserved. v3.1


