

W H I T E P A P E R

page 1 of 18©2022 CriticalBlue Limited. All rights reserved. Version 3.1

Contents

The Mobile Threat Model 2
Mobile Attack Surfaces and How They Are Exploited by Bad Actors 3

Attack Surface 1: User Credentials 3
Attack Surface 2: App Integrity 4
Attack Surface 3: Device Integrity 4
Attack Surface 4: API Channel Integrity 4
Attack Surface 5: API and Service Vulnerabilities 5

Conclusion 6
Appendix A - How Approov Works 7

1. Mobile App Registration 7
2. App Makes API Calls 7
3. Integrity Assessment 8
4. Approov Token Delivered to App and included in API Request 8
5. Approov Token Check on the API Backend 8

Appendix B - Pentesting Mobile Apps and APIs 9
Testing Apps and APIs when Approov is Deployed 9
Pentesting Guidance by Phase 9

Appendix C - Tools for Pentesting 14
All in One 14
Static Analysis 14
Repackaging Apps 15
Instrumentation Frameworks 15
MitM Attacks 15
API Testing 16

Appendix D: Mobile Security Resources and References 17

The Threats to Mobile Apps and APIs

WHITE PAPER: The Threats to Mobile Apps and APIs

page 2 of 18©2022 CriticalBlue Limited. All rights reserved. Version 3.1

Introduction
The two foundational elements driving progress in today’s
digital first world are the mobile app and the API. Mobile
apps are the new channel to your customers and the use
of APIs is driving innovation, interoperability and new
business models in every major industry.

Unfortunately the combination of these technologies also
presents some new security challenges, offering novel
opportunities to bad actors to access sensitive data and
derail your business:

• Mobile apps are downloaded to unmanaged devices
and there are a battery of available tools to allow
hackers to dissect and manipulate them at their
leisure.

• APIs expose application logic and sensitive data
such as Personally Identifiable Information (PII) and
because of this have increasingly become a target for
attackers. Without secure APIs, rapid innovation will
be impossible.

If secrets and application logic can be extracted from the
app or elsewhere then bad actors can and will use those
to stage sophisticated and highly automated attacks on
your APIs.

The rich target presented to bad actors by the interaction
of the mobile app and its APIs is the new area where
protection must be enhanced and security testing must
be focused.

Traditionally a penetration test, also known as a pentest,
is a simulated cyber attack against your computer
system. In the context of web application security, pen-
etration testing is commonly oriented towards trying to
identify and exploit vulnerabilities, such as unsanitized
inputs that are susceptible to code injection. Pentesting
can involve the attempted breaching of any number of
application systems (e.g. Application Programming Inter-
faces (APIs) and frontend/backend servers).

This paper describes each of the new attack surfaces in
your platform which are exposed by the mobile channel
and the way attackers can exploit them in orchestrated
attacks. We will also stress the key distinction between
uncovering and managing vulnerabilities, and the impor-
tance of testing any app or API shielding technology
which prevents vulnerabilities being exploited.

We will refer to the OWASP documents and resources:

• OWASP is well established in (server-side) Applica-
tion Security, regularly publishing an OWASP Top Ten
which has become the benchmark for Web Applica-
tion Firewall (WAF) offerings and more recently the
OWASP API Top Ten via the OWASP API Security
Project.

• Also of relevance is the OWASP Mobile Security
project. There are two key documents which lay out
an approach to mobile application security and define
a tiered standard to assess the security of mobile
applications: the OWASP Mobile Security Testing
Guide, and the Mobile App Sec Verification Standard
(MASVS).

A full description of these and other resources is available
in Appendix C of this document.

The Mobile Threat Model
To make it easier to assess and test the security of the
mobile channel in its entirety we will introduce a frame-
work which breaks down the overall architecture into five
closely linked attack surfaces. This provides a means to
direct our testing and to assess the overall security pos-
ture of the channel as a whole.

Smooth and secure mobile app operation is built on the
assumption that a legitimate user without malicious
intentions is accessing your service, using an untam-
pered version of your mobile app, running on an uncom-
promised device, communicating directly with your API
server via a secure channel and that the API cannot be
accessed by any other way. The five interlinked attack
surfaces that can potentially be exploited are therefore:

1. User Credentials

2. App Integrity

3. Device Integrity

4. API Channel Integrity

5. API and Service Vulnerabilities

https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-api-security/
https://mobile-security.gitbook.io/mobile-security-testing-guide/
https://mobile-security.gitbook.io/mobile-security-testing-guide/
https://mobile-security.gitbook.io/masvs/
https://mobile-security.gitbook.io/masvs/

WHITE PAPER: The Threats to Mobile Apps and APIs

page 3 of 18©2022 CriticalBlue Limited. All rights reserved. Version 3.1

We will look at each surface in turn in order to discuss
the nature of the potential attack and the testing strategy
needed.

Although there is the possibility of an attacker manually
using stolen credentials to access a service via a genu-
ine app instance, this scenario does not scale since they
must manually use the app, so in general an attacker has
the ultimate goal of setting up an automated attack on
the API. The automated tool of choice could be a modi-
fied app or a script. The API attack can then attempt to
extract data by exploiting vulnerabilities such as Broken
Object Level Authorization (BOLA) or by using a list of
stolen genuine user credentials.

With this end in mind the bad actor will move through the
different attack surfaces to identify and find information
such as keys and other secrets as well as understand the
logic of the app <-> API interaction, and then prepare an
automated attack.

The approach of the attacker can therefore be summa-
rized as:

• Explore all attack surfaces for information on how
mobile apps access the API and how the API is used
to access data and resources in the backend.

• Use this information to set up an automated attack
on the API.

Mobile Attack Surfaces and How They
Are Exploited by Bad Actors

Attack Surface 1: User Credentials
The authentication and authorization of the user is criti-

cal, particularly if personal data is being accessed via the
app. Frameworks such as OpenID Connect, and OAuth2
can be used and 2FA and biometrics provide a further
level of protection.

However valid credentials can be stolen via spoofing,
phishing and have been exposed via large data breaches:
username/password combinations are bought and sold
on the dark web and used in credential stuffing attacks.
Even 2FA and biometrics checks can be poorly imple-
mented, leaving loopholes for bad actors to use compro-
mised credentials.

Credentials don’t even need to be stolen to be used mali-
ciously. Increasingly, there are cases where users type in
their own credentials to a fake app or betting site so the
credentials are willingly given and then exploited by the
attacker.

Finally the onboarding process is often exposed. Anyone
(including a hacker) can easily just sign up for the service.

It is much easier to use stolen user credentials if other
attack surfaces have vulnerabilities. For example, if some-
body’s credentials are compromised then nothing can
stop a bad actor from typing them into a valid instance
of the app. But if controls around App Integrity (Attack
Surface 2 - see below) are in place the only way this can
be done is by “typing in” rather than running an automated
credential stuffing attack against the API - in effect ‘at
scale’ credential stuffing can be stopped.

Similarly if the user authorization token has been
extracted from the mobile app and is being used from a
script, App integrity controls can effectively block them
from being exploited.

WHITE PAPER: The Threats to Mobile Apps and APIs

page 4 of 18©2022 CriticalBlue Limited. All rights reserved. Version 3.1

Attack Surface 2: App Integrity
When a hacker targets the actual mobile app they are
seeking to do one or both of the following:

• Extract information which can be used to mount an
automated attack on your API using another tool. As
well as gaining useful identifiers and keys this could
involve inspecting the logic of the mobile app in order
to reverse engineer how the API works with the aim
of abusing the business logic through the API.

• Transform the app itself into a tool which can be used
in an automated attack or tweak it in some other way,
for example to divert payment or advertising revenue
or to hijack user information for nefarious purposes.

At run-time the API should seek to establish the validity
of what is making the request to the API server. Is it really
coming from a genuine instance of your mobile app, or
is it a bot, an automated script or an attacker manually
accessing your API backend with a tool like Postman?
Often no such validation mechanism is in place. The
hacker tries to understand the structure of the API calls,
and investigate if any mechanism is being employed to
validate the app in order to replicate it with any required
secrets.

The mobile app may use API keys, device ids, or a user
authorization token to communicate what is making the
request to the API backend, but often these identifiers are
hardcoded in the mobile app source code, thus they can
be extracted with the use of reverse engineering tech-
niques, for example a static analysis of the binary.

Statically reverse engineering a mobile app is one of the
most common steps taken when attacking a mobile app,
and it’s listed in 9th position of the most recent OWASP
Mobile Top 10 risks. To protect against this threat an
obfuscation tool must be used - open source and com-
mercial options are available - and obfuscate everything
that is possible to obfuscate. Obfuscation per se will not
avoid the decompilation process, but will make it time
consuming and expensive to follow the code since vari-
ables, functions and classes names will be redacted.

When more sophisticated methods such as calculating
the API key at runtime are used to hide these identifiers/
secrets then dynamic code instrumentation at runtime or
a MitM attack can be used to extract them. A bad actor
will try to extract whatever is being used to validate the
app so that this can be used in an automated attack on
the API.

When the mobile app uses certificates from an encrypted
store to sign requests to the API backend, these need to

be unencrypted at run-time in order to be used. An instru-
mentation framework can be used to inject code that will
extract the certificates which then can be reused outside
the mobile app. This same approach of injecting code can
be used to extract anything of interest from the mobile
app at runtime.

Code tampering comes in the 8th position of the most
recent OWASP Mobile Top 10 risks. This is done by
repackaging the mobile app with removed or altered
code, and if done correctly the API will see the tampered
mobile app behave as the original one did. For example,
if the API backend is checking the header with the mobile
app binary signature hash, then the repackaged app will
have code in place to deliver the same value as the origi-
nal app.

Attack Surface 3: Device Integrity
The device on which the mobile app is running may be
rooted or jailbroken, and this might be done for legitimate
reasons; some users like to run customized or more
recent versions of the OS and some users like to side-
load genuine apps which may not be available in their
local app stores. These actions do not, in and of them-
selves, indicate malicious activities are going on. That
said, rooting/jailbreaking is a common technique used
by attackers (and pentesters) to bypass security mech-
anisms and limitations imposed by the original version
of the OS. Rooted and jailbroken devices pose a threat to
device integrity, because these actions enable the in-built
security mechanisms to be compromised. By extension
the threat extends to the mobile app integrity, because
the mobile app is now running in an environment that
cannot be trusted.

Another form of code tampering is to inject code at run-
time by using an instrumentation framework. Such frame-
works are used to hook into the key functions which,
when manipulated, will produce different app behavior
than expected or will change input parameters or output
results. In this way fraudsters can intercept and modify
genuine user instructions.

To prevent this form of attack the mobile app must
employ runtime self defense code to detect rooted/jail-
broken mobile devices. Ideally this code will also detect
the presence of all known instrumentation frameworks.

Attack Surface 4: API Channel Integrity
The communications channel between the mobile app
and API is exposed, often passing via public wifi connec-
tions and the internet rather than being contained within a

https://github.com/OWASP/www-project-mobile-top-10/blob/master/2016-risks/m9-reverse-engineering.md
https://github.com/OWASP/www-project-mobile-top-10/tree/master/2016-risks
https://github.com/OWASP/www-project-mobile-top-10/tree/master/2016-risks
https://github.com/OWASP/www-project-mobile-top-10/blob/master/2016-risks/m8-code-tampering.md
https://github.com/OWASP/www-project-mobile-top-10/tree/master/2016-risks

WHITE PAPER: The Threats to Mobile Apps and APIs

page 5 of 18©2022 CriticalBlue Limited. All rights reserved. Version 3.1

private network or protected by a VPN.

Setting up communication via HTTPS provides a secure
channel, but this may not be sufficient to keep all sensitive
information away from attackers. Even when the latest TLS
standards are used, an attacker can still perform man-in-
the-middle attacks between the API server and a mobile
app in order to be able to extract all secrets and under-
stand app queries/responses to and from the API server.

The basic concept of MitM is to convince the client and
the server that they are communicating with each other,
when in fact a third party is impersonating both ends of the
channel. The channel between an API and a mobile app is
a target for this kind of attack.

For bad actors MitM is ideal for researching a client-server
communication channel in order to establish what attacks
might be possible. Examples of potential exploits which
could be researched using MitM activities are:

• Comprehension of the API protocols in use, so that
scripts can be created to impersonate genuine traffic
sequences.

• Extraction of API keys in transit, to be later inserted in
scripts in order to convince the server that the commu-
nication is coming from a genuine client instance.

• Extraction of user credentials or authentication tokens
in transit, to be later inserted in scripts in order to
convince the server that the communication is coming
from a genuine user.

• Manipulation of transaction requests which are made
via the API such that the action requested from the
server is different from that initiated by the remote
client.

• Researching the existence of API vulnerabilities, e.g.
Broken Object Level Authorization (BOLA), which can
be later exploited by scripts to access data which
should not normally be available to a given user.

The use of certificate pinning does make the MitM attack
more difficult to perform, but not impossible, since the

mobile app can be repackaged to remove the pinning
detection controls or to inject the pins or certificates from
the MitM proxy tool. An instrumentation framework such
as Frida can also be employed to execute an MitM attack
when pinning is deployed.

Check out this for more information about how certificate
pinning can be bypassed.

Attack Surface 5: API and Service
Vulnerabilities
There are three common scenarios for when a hacker
targets an API with an automated tool:

• Login system attacks: Bad actors use credential
stuffing and other brute-force mechanisms to test
stolen valid credentials from the dark web and deter-
mine the credentials’ validity on the API. They can
then utilize any ‘working’ credentials to access API
services. Bots may execute aggressive attacks or be
programmed to run slow attacks designed to stay
under the radar of any rate limiting defenses.

• Theft of data: Hackers use APIs to steal files, photos,
credit card information, and personal data from
accounts available through an API. The approach can
range from simple data scraping to more sophisti-
cated attacks which exploit BOLA and other vulner-
abilities to infiltrate and manipulate PII data. Again,
these activities can be staged as extended-duration
data exfiltration attacks to avoid triggering a blocking
response from the API gateway.

• DoS: These attacks are intended to impact the
availability of the endpoints using a Denial of Service
(DoS) attack. A DoS attack renders the API endpoint
unusable for legitimate requests by overloading the
API endpoint with synthetic API requests in order
to knock it offline. While some DoS and Distributed
Denial of Service (DDoS) attacks are volumetric in
nature (overwhelming the API endpoints with more
requests than they can handle), many of the DoS

https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://dzone.com/articles/api12019-broken-object-level-authorization
https://blog.approov.io/bypassing-certificate-pinning

WHITE PAPER: The Threats to Mobile Apps and APIs

page 6 of 18©2022 CriticalBlue Limited. All rights reserved. Version 3.1

attacks are layer 7 DDoS attacks, which exploit bugs
in the API endpoint that can also render it unable to
respond to new requests.

An API that is open to being consumed by public clients
needs to identify not just who but also what is making
the request. If a hacker has extracted enough information
from the above Attack Surfaces about the validation pro-
cess and has acquired the necessary keys, then the API
can be abused by an automated attack, and any vulnera-
bilities in the API can be exploited.

The Open Web Application Security Project (OWASP)
publishes a Security Top 10 list for API vulnerabilities that
have caused recent data breaches and posed common
security hazards. The list includes everything from broken
authorization and authentication to excessive data expo-
sure, lack of rate limiting, logging and monitoring, and
improper asset management and security configurations.
Of course there are unknown or “zero day” vulnerabilities
- something that a hacker has discovered that is not on a
list of “known” vulnerabilities.

Beyond this, there is the issue of API Abuse. These
attacks do not depend on API vulnerabilities or imple-
mentation issues, relying instead on legitimate access to
business logic and data in unexpected ways to undermine
security.

See here for more information about how to protect from
vulnerabilities and weaknesses in APIs.

Conclusion
An attacker can orchestrate an attack across the above
Attack Surfaces including one or more of the following
activities.

Attack Preparation:

• Acquire user credentials (Attack Surface: User Cre-
dentials) from the dark web or from phishing/spoof-
ing attacks.

• Harvest secrets and business logic from app code
(Attack Surface:App Integrity).

• Tamper with the client environment in order to under-
stand the operation of the service and acquire secrets
(Attack Surface: Device Integrity).

• Investigate app <-> API dialog via a MitM attack
(Attack Surface: Channel Integrity) to intercept
secrets and understand the logic of the app and API.

Attack Execution:

• Use acquired information to construct valid queries
and set up automated tools to target the API (Attack

Surface: Service and API Integrity) in order to:

• harvest data using commonly known or new
vulnerabilities

• abuse the API business logic

• interfere with the operation of the service

• Use harvested information to tamper with the app
and deploy a modified version in order to divert finan-
cial transactions, advertising revenue or simply to
steal data (Attack Surfaces: App and Device Integrity).

The mobile security project of OWASP covers the required
approach to mobile app security including discussion
of the key steps of threat modeling, building a secure
SDLC, how security is integrated into DevOps, the role
of pentesting and more. See Appendix C and https://
mobile-security.gitbook.io/mobile-security-testing-guide/
overview/0x04b-mobile-app-security-testing

It is useful here however to remember that the security
best practice is “Shift left, but shield right”. Shift left of
course means using processes, tools and development
discipline to address security early in the development
process in order to identify, manage and eliminate secu-
rity issues before deployment. Shield right means to put
controls in place to protect the running service. Under-
standing and making explicit the interplay between these
two approaches ensures optimal security and should be
reflected in the approach to testing.

The Appendices of this document provide more informa-
tion about how to protect the attack surfaces described in
this document from being exploited and how to evaluate
and test the effectiveness of the defenses which are
deployed.

Approov provides a run-time shielding solution which is
easy to deploy and protects your mobile apps, APIs and
the channel between them from any automated attack. It
effectively blocks the execution of attacks, irrespective of
the vulnerabilities which are already known or uncovered
through testing. See Appendix A for more information on
how Approov does this.

See Appendix B for more guidance on pentesting mobile
apps and APIs, particularly when using Approov as a
shielding technology.

Appendix C provides a summary of some of the tools you
can use to test the security of mobile applications and
APIs.

Finally Appendix D provides a summary of useful
resources and guidelines to help evaluate threats and
plan and execute a solution.

https://owasp.org/www-project-api-security/
https://www.darkreading.com/application-security/apis-get-their-own-top-10-security-list/d/d-id/1335786
https://www.darkreading.com/application-security/apis-get-their-own-top-10-security-list/d/d-id/1335786
https://blog.approov.io/addressing-vulnerabilities-and-abuse-for-comprehensive-api-security
https://mobile-security.gitbook.io/mobile-security-testing-guide/overview/0x04b-mobile-app-security-testing
https://mobile-security.gitbook.io/mobile-security-testing-guide/overview/0x04b-mobile-app-security-testing
https://mobile-security.gitbook.io/mobile-security-testing-guide/overview/0x04b-mobile-app-security-testing

WHITE PAPER: The Threats to Mobile Apps and APIs

page 7 of 18©2022 CriticalBlue Limited. All rights reserved. Version 3.1

Appendix A - How Approov Works

Approov provides a run-time shielding solution which is easy to deploy and protects your APIs and the channel between
your apps and APIs from any automated attack. It uses a cryptographically signed “Approov token” to allow the app to
provide proof that it has passed the runtime shielding process.

Integration involves including an SDK in your mobile app via a mobile app quickstart and adding an Approov token check
in your backend API implementation. A full set of frontend and backend Quickstarts are available to facilitate integration
with common native and cross-platform development environments.

Approov also provides Runtime Secrets Protection whereby API keys can be securely held in the Approov cloud and only
transmitted to app instances which are valid and untampered. This approach allows Approov to be used for 3rd party
APIs where the backend API cannot be modified

By ensuring only an untampered genuine mobile app running in an uncompromised environment can access the API,
Approov prevents the exploitation at scale of:

• Stolen user identity credentials.

• Vulnerabilities in your apps or APIs, irrespective of whether the vulnerabilities are already known, uncovered through
testing or “zero-day”.

• Malicious business logic manipulation of the API.

• Man in the middle attacks.

 The following sections refer to the diagram above to show how the Approov flow works in detail.

1. Mobile App Registration
The Approov CLI (Command Line Interface) tool is downloaded to your development environment. It is used to access
and administer the Approov account provided upon sign up. The tool is also used to register new apps that are to be
released to the app stores. This is achieved by analyzing the app (in either .apk, .aab or .ipa format) and creating a
unique signature which captures all aspects of the application and is virtually impossible to access or replicate. This
unique “DNA” of the app is added to a database in the Approov cloud service for your account. No application code is
stored or uploaded to the Approov service. The particular build of the app then becomes recognized as being official.

2. App Makes API Calls
The quickstart integrations either hook into the app’s network stack, or provide a networking stack implementation with
the same interface your app is already using. Either way, only minimal code changes are required to integrate Approov

https://approov.io/resource/quickstarts/
https://approov.io/docs/latest/approov-integration-examples/

WHITE PAPER: The Threats to Mobile Apps and APIs

page 8 of 18©2022 CriticalBlue Limited. All rights reserved. Version 3.1

into the app. When an API call is made that is to be protected with Approov, and no cached Approov token is available,
the integrity assessment process is initiated automatically. This causes the Approov SDK to communicate with the
Approov cloud service.

3. Integrity Assessment
The integrity check process requires the SDK and the Approov cloud service to work together. The SDK analyzes the
runtime environment of the app and the authenticity of the app that is being measured. These checks are implemented
in hardened code and communications are protected by TLS, certificate pinning and also by a secondary level of request
integrity signing. The app gathers and passes data and measurements to the Approov service. The Approov cloud
service performs analysis on the data provided by the SDK and makes a decision based on this and the security policy
criteria you set for your account. These policies are dynamic and can be updated in the cloud service at any time.

If the criteria are met then the Approov cloud service provides the short lived cryptographically signed Approov token.
If the criteria are not met then a token is still issued, but it is not signed with the correct secret. The mobile app itself is
never able to distinguish between a valid and an invalid Approov token.

If Runtime Secrets Protection is used then the API keys are securely transmitted from the Approov cloud to the app at
this point, where they can be added to the request.

4. Approov Token Delivered to App and included in API Request
The obtained Approov token is added automatically as a header to the outgoing API request, which then continues. The
same Approov token may be used for up to 5 minutes (as long as no change in the environment is detected) to avoid
further communication with the Approov cloud.

It is important that all communications made by these APIs are pinned so that no Man-in-the-Middle (MitM) interception
is possible that could make a copy of API request data, including the Approov token. Pinning TLS connections are man-
aged automatically by the Approov dynamic pinning functionality.

5. Approov Token Check on the API Backend
If Approov tokens are used then the backend API must check the validity of the Approov token by checking if it has been
correctly signed and has not expired. If valid, then you know that the API request is really coming from an official reg-
istered version of your app and that it is not being spoofed by some other entity. Moreover, a valid Approov token also
indicates that the checks on the runtime environment have passed, as defined by the security policy you have set in your
account. Since the signing key is never put inside the app, an attacker cannot reverse engineer it in order to create their
own signed Approov tokens.

Any request that fails the Approov token check is coming from:

• A script, bot, or a manual request and not from a genuine and unmodified instance of the mobile app.

• An app which is running in a compromised environment as defined by policy e.g. from a mobile app that is under
attack via MitM, code injection, etc.

• A repackaged or tampered mobile app.

Typically you would configure your backend to block such requests.

WHITE PAPER: The Threats to Mobile Apps and APIs

page 9 of 18©2022 CriticalBlue Limited. All rights reserved. Version 3.1

Appendix B - Pentesting Mobile Apps and APIs
Effective penetration testing requires a diligent effort to find enterprise weaknesses, just as a malicious individual would.

This Appendix contains two sections. First there is a discussion of how to pentest when the Approov solution is protect-
ing your APIs and second some specific guidance for each phase of a typical pentest.

Testing Apps and APIs when Approov is Deployed
If Approov is deployed as a defense then this needs to be taken into account in order to enable pentesting to proceed
smoothly. Approov effectively blocks access to the API from tampered apps, compromised environments, instrumenta-
tion frameworks and scripting tools, all of which are tools and tactics often employed by pentesters as well as hackers.
This section provides guidance to the pentester on how to facilitate testing of vulnerabilities which would otherwise be
impossible to exploit with Approov in place.

Accessing API Backend Endpoints Protected by Approov

During the pentest activities the pentester may need to pentest directly the API endpoints which are protected by
Approov and the following approaches are possible:

• Force Device to Always Pass: To pentest the API behind Approov, the device ID of the originating mobile device
can be provided to always pass the device with the Approov cloud service so that it always delivers valid Approov
tokens. The device ID can be extracted by using one of the methods described in the Approov docs. Once the device
ID has been extracted, it can be forced to pass using these instructions.

• Disabling Approov Certificate Pinning: Some pentest activities may be easier to perform if pentesters can have pin-
ning disabled, and Approov makes this easier by leveraging the Approov dynamic config and its over the air update
capabilities. To unpin a specific device follow these instructions in the Approov docs.

• Approov Example Tokens: These allow Approov tokens to be generated with a 1-hour validity period for the pur-
poses of testing the backend API. The customer can issue, via the Approov CLI, an example token to be used by the
pentesters during their security assessment using tools such as Postman.

Approov Visibility for Pentesting
In order to provide visibility to the pentesters during their security assessment the customer has several options which
can be used all together or individually.

• Approov Token Info: More visibility for each Approov token can be obtained by querying a special Approov endpoint.
This requires a cURL command example obtained from the Approov CLI by following these instructions in the
Approov docs. This also requires that the Approov Attestation Response Code be enabled on the Approov token.

• Device Specific Information: When a device is forced to pass, it’s possible to retrieve more information about the
device attestations with the Approov cloud service. Follow these instructions to learn how to use this feature.

Pentesting Guidance by Phase
The table in this section provides guidance by phase based on the PTES Guidelines.

https://approov.io/docs/latest/approov-usage-documentation/#managing-devices
https://approov.io/docs/latest/approov-usage-documentation/#adding-a-device-security-policy
https://approov.io/docs/latest/approov-usage-documentation/#setting-pinning-mode
https://approov.io/docs/latest/approov-usage-documentation/#generating-example-tokens
https://approov.io/docs/latest/approov-usage-documentation/#obtaining-additional-token-information
https://approov.io/docs/latest/approov-usage-documentation/#attestation-response-code
https://approov.io/docs/latest/approov-usage-documentation/#adding-a-device-security-policy
https://approov.io/docs/latest/approov-usage-documentation/#getting-specific-device-information
http://www.pentest-standard.org/index.php/Main_Page

WHITE PAPER: The Threats to Mobile Apps and APIs

page 10 of 18©2022 CriticalBlue Limited. All rights reserved. Version 3.1

Testing Stage Purpose Specific Guidance

Pre-Engagement
Planning

During this pre-phase, the scope of
the testing is defined in collaboration
with the penetration testing company
in order to outline the logistics of the
test, expectations, legal implications,
objectives and goals the customer
would like to achieve.

Planning will include whether this is a
black box, white-box or gray-box pen-
test and goals should be aligned to
specific pentesting outcomes.

• Use the company Security Policy to
guide the scoping exercise which should
explicitly consider how deeply app and
API vulnerabilities will be explored versus
testing deployed shielding technology. Also
consider whether API abuse is in scope:
how automation can be used to subvert
a company’s business model, even in the
absence of specific API vulnerabilities.

• Specify clearly the environment to be
tested - use our threat guide to the attack
surfaces in the application channel and
clearly identify the app (versions) and APIs
to be tested.

• Outline the objectives and activities for
each phase and build a project plan.

• Write the SOW(s) for any external contrac-
tors.

• Have a communications plan - who needs
to know pen-testing is taking place eg the
operations team.

Intelligence Gathering
The organization being tested will
provide the penetration tester with
general information about in-scope
targets, and the tester will gather
additional details from publicly acces-
sible sources.

• Determine if certificate pinning is being
employed.

• Determine if any public APIs are being
accessed.

• Determine which countermeasures are
in place and research them to evaluate if
circumvention techniques exist and can be
employed.

• Determine the authentication method
being used by the API for users (e.g. Auth0)
or apps (e.g. API keys).

Threat Modelling
Threat modeling is a process for pri-
oritizing where remediation strategies
should be applied to keep a system
secure.

• Threat modelling evaluates the level of risk
based on the value of assets exposed (e.g.
PII) and the motivation and capabilities of
bad actors.

• The primary threat to consider is the
exploitation of the API at-scale in order to
access sensitive data assets.

• The tester should assume that if the
assets are valuable enough, authentication
information can and will be obtained by
bad actors in order to attack APIs directly
and countermeasures should be in place to
protect from these kinds of attacks.

WHITE PAPER: The Threats to Mobile Apps and APIs

page 11 of 18©2022 CriticalBlue Limited. All rights reserved. Version 3.1

Testing Stage Purpose Specific Guidance

Vulnerability Analysis
and Assessment

Penetration testers are expected to
identify, validate, and evaluate the
security risks posed by vulnerabili-
ties. This analysis of vulnerabilities
aims to find flaws in an organization’s
systems that could be abused by a
malicious individual. Vulnerability
scans tend to use automated tools,
with some manual support, to identify
known weaknesses in a target enter-
prise.

• The extent and focus of vulnerability evalu-
ation depends on the scope of the testing:
in some cases the aim will be to validate
mitigation is in place and working and
the vulnerability is not accessible; while in
other instances the goal may be to dis-
cover all applicable vulnerabilities.

• This is particularly relevant in the case
of mobile applications where there is
effectively an arms-race between the
deployment of increasingly sophisticated
techniques to protect code and secrets on
the one hand and the increasingly sophis-
ticated tools and techniques available to
bad actors to breach these controls. For
the tester a tradeoff should be considered
between the cost and effort of static,
dynamic and manual efforts to uncover
vulnerabilities and the assumption that
secrets permitting access to APIs will be
uncovered.

• If finding vulnerabilities in the app is in
scope, apps can be reverse engineered
using Mobile Security Framework (MobSF),
an open source security framework
designed to automate the static and
dynamic code analysis of mobile applica-
tions, supporting APK and IPA file formats
as well as zipped source code. MobSF
is a layered framework of different tools,
one of which is apktool. Apktool handles
decompiling and decoding of the compiled
sources in an APK file.

• A similar tradeoff is true for API and/or
application vulnerabilities. For example
extensively testing every vulnerability on
the OWASP Top 10 should be balanced
against evaluating the effectiveness of
countermeasures to block exploitation of
the most critical threats and vulnerabilities
in the back-end.

WHITE PAPER: The Threats to Mobile Apps and APIs

page 12 of 18©2022 CriticalBlue Limited. All rights reserved. Version 3.1

Testing Stage Purpose Specific Guidance

Exploitation The exploitation phase of a penetra-
tion test focuses solely on establish-
ing access to a system or resource
by bypassing security restrictions
based on the high value target list
established by the vulnerability
assessment. The main focus is to
identify the main entry points into the
organization and to identify high value
target assets.

• This stage should primarily be aimed at
attempting to exploit the most critical
vulnerabilities in the APIs. The three most
common tactics and techniques used by
adversaries to breach APIs affect authenti-
cation, authorization, and availability.

• Authentication: For authentication attacks
adversaries combine dumped credentials
from previous breaches in an account
takeover (ATO) style attack referred to as
credential stuffing where usernames and
passwords are sent to the API until a suc-
cessful authentication is established.This
is also called brute forcing.

• Authorization: Authenticating with an API
with either a legitimate account or with an
API key or token, doesn’t mean that the
individual is authorized to read or write the
data. An example of a devastating autho-
rization vulnerability is number one on the
OWASP API Top10 list, Broken Object Level
Authorization (BOLA).This vulnerability is
also referred to as Insecure Direct Object
Reference (IDOR). Using genuine creden-
tials the hacker can attempt to exploit this
and other vulnerabilities.

• Availability: The third type of attack affects
availability of the endpoints using a Denial
of Service (DoS) attack. A DoS attack
renders the API endpoint unusable for
legitimate requests by overloading the API
endpoint with synthetic API requests in
order to knock it offline. While some DoS
and Distributed Denial of Service (DDoS)
attacks are volumetric in nature (over-
whelming the API endpoints with more
requests than they can handle), many of
the DoS attacks simply exploit bugs in the
API endpoint that can also render it unable
to respond to new requests.

• For penetration testing of the APIs, dif-
ferent applications can be employed eg.
custom API requests can be created using
Postman, and Burp Suite Pro can be used
for intercepting the mobile app traffic,
modifying it and replaying it to the APIs.

WHITE PAPER: The Threats to Mobile Apps and APIs

page 13 of 18©2022 CriticalBlue Limited. All rights reserved. Version 3.1

Testing Stage Purpose Specific Guidance

Final Analysis and
Review

After the exploitation phase is com-
plete, the goal is to document the
methods used to gain access to your
organization’s valuable information.
The penetration tester should be able
to determine the value of the compro-
mised systems and any value associ-
ated with the sensitive data captured.

Once the penetration testing recom-
mendations are complete, the tester
should clean up the environment,
reconfigure any access he/she
obtained to penetrate the environ-
ment, and prevent future unautho-
rized access into the system through
whatever means necessary.

• Identify strengths and especially weak-
nesses in the security. Give a sense of both
the likelihood and severity of each vulnera-
bility being exploited.

• Document each repeatable test scenario
which exposes a vulnerability.

• Make recommendations on how to resolve
and/or minimize the impact of each vulner-
ability.

• When cleaning up the test environment,
for Approov specifically, ensure that all
device-specific security policies and pin-
ning overrides have been reset.

Use of Test Results Reporting is often regarded as the
most critical aspect of a pentest. It’s
where you will obtain written recom-
mendations from the penetration test-
ing company and have an opportunity
to review the findings from the report
with the ethical hacker(s).

The findings and detailed explana-
tions from the report will offer you
insights and opportunities to signifi-
cantly improve your security posture.
The report should show you exactly
how entry points were discovered in
the Threat Modeling and Vulnerability
Assessment phases as well as how
you can remediate the security issues
found during the Exploitation phase.

• Summarize the final review results to
highlight the overall business exposure with
some measure of the cost to correct.

• Integrate the summary with the more de-
tailed final review material to form a com-
plete report.

WHITE PAPER: The Threats to Mobile Apps and APIs

page 14 of 18©2022 CriticalBlue Limited. All rights reserved. Version 3.1

Appendix C - Tools for Pentesting

The OWASP Mobile Security Testing Guide covers a lot of different tools that can be used to pentest mobile apps. This
list summarizes the most useful.

All in One

Name License Notes

MobSF - Mobile Security Framework Open-source Mobile Security Framework (MobSF) is an auto-
mated, all-in-one framework for mobile application
(Android/iOS/Windows) pentesting, malware
analysis and security assessment and is capable
of performing static and dynamic analysis.

Static Analysis

Name License Notes

MobSF - Mobile Security Framework Open-source Android, iOS. Docker image.

ApkTool Open-source A tool for reverse engineering 3rd party, closed,
binary Android apps. It can decode resources
to nearly original form, make modifications and
rebuild.

Ghidra Open-source This framework includes a suite of full-featured,
high-end software analysis tools that enable
users to analyze compiled code on a variety of
platforms including Windows, macOS, and Linux.
Capabilities include disassembly, assembly,
decompilation, graphing, and scripting, along
with hundreds of other features. Ghidra sup-
ports a wide variety of processor instruction sets
and executable formats and can be run in both
user-interactive and automated modes.

Radare2 Open-source The Radare project started as a forensics tool: a
scriptable command-line hexadecimal editor able
to open disk files, but later added support for ana-
lyzing binaries, disassembling code, debugging
programs, and attaching to remote gdb servers.

IDA Free/pro iOS binary analysis.

https://github.com/OWASP/owasp-mstg
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/iBotPeaches/Apktool
https://github.com/NationalSecurityAgency/ghidra
https://github.com/radareorg/radare2
https://www.hex-rays.com/products/ida/main-differences-between-ida-editions/

WHITE PAPER: The Threats to Mobile Apps and APIs

page 15 of 18©2022 CriticalBlue Limited. All rights reserved. Version 3.1

Repackaging Apps

Name License Notes

apk-mitm Open-source A CLI application that automatically prepares
Android APK files for HTTPS inspection.

ApkTool Open-source A tool for reverse engineering 3rd party, closed,
binary Android apps. It can decode resources
to nearly original form and rebuild them after
making some modifications.

OpTool Open-source Interfaces with MachO binaries in order to insert/
remove load commands, strip code signatures,
resign, and remove aslr.

Fridapa Open-source An automated wrapper script for unpacking,
patching (insert the load command into binary),
re-signing and deploying apps on non-jailbroken
device.

Radare2 Open-source Read about iOS code signing here.

Instrumentation Frameworks

Name License Notes

Frida Open-source Android, iOS.

Objection Open-source Runtime mobile exploration toolkit, powered by
Frida, built to help you assess the security pos-
ture of your mobile applications, without needing
a jailbreak.

Magisk Open-source Android rooting tool, with direct support for
Xposed modules.

xPosed Open-source Android instrumentation framework.

Cycript on Frida Open-source iOS

MitM Attacks

Name License Notes

mitmproxy Open-source Available as a docker image.

Appmon Open-source AppMon is an automated framework for moni-
toring and tampering system API calls of native
macOS, iOS and android apps. It is based on
Frida.

https://github.com/shroudedcode/apk-mitm
https://github.com/iBotPeaches/Apktool
https://github.com/alexzielenski/optool
https://github.com/tanprathan/Fridpa
https://github.com/radareorg/radare2
https://github.com/radareorg/radare2/blob/master/doc/ios.md
https://github.com/frida/frida
https://github.com/sensepost/objection
https://frida.re/
https://github.com/topjohnwu/Magisk
https://repo.xposed.info/module/de.robv.android.xposed.installer
https://github.com/nowsecure/frida-cycript
https://github.com/mitmproxy/mitmproxy
https://github.com/dpnishant/appmon
https://frida.re/

WHITE PAPER: The Threats to Mobile Apps and APIs

page 16 of 18©2022 CriticalBlue Limited. All rights reserved. Version 3.1

Burp Suite Free/pro Proxy your HTTPS traffic, edit and repeat
requests, decode data, and more.

Fiddler Free/pro Capture all HTTP(S) traffic between your com-
puter and the Internet with Fiddler HTTP(S)
proxy. Inspect traffic, set breakpoints, and fiddle
with requests & responses.

API Testing

Name License Notes

APICheck Open-source Collection of tools for API testing. See docs.

zaproxy Open-source Automate API pentesting. See here and here.

insomnia Open-source Create requests to try against your API.

Postman Free Create requests to try against your API.

https://portswigger.net/burp/communitydownload
https://www.telerik.com/purchase/fiddler
https://github.com/BBVA/apicheck
https://bbva.github.io/apicheck/docs
https://github.com/zaproxy/zaproxy
https://www.zaproxy.org/faq/how-can-you-use-zap-to-scan-apis/
https://www.zaproxy.org/docs/docker/api-scan/
https://github.com/Kong/insomnia
https://www.postman.com/downloads/

WHITE PAPER: The Threats to Mobile Apps and APIs

page 17 of 18©2022 CriticalBlue Limited. All rights reserved. Version 3.1

Appendix D: Mobile Security Resources and References

OWASP provides relevant guidance to developers and testers via several key projects.

• Mobile Security Testing

https://owasp.org/www-project-mobile-security-testing-guide/

This project is primarily focussed on Attack Surface 2 (iOS and Android app security) with some discussion of
Attack Surface 3 (Device Integrity) and some coverage of Attack Surface 4 (API Channel Integrity) including a dis-
cussion of network security and MITM attacks. There are two key documents which are available from this project:
the OWASP Mobile Security Testing Guide, primarily focussed on the development phase and the task of identifying
vulnerabilities in the mobile app code for Android, iOS or hybrids apps and the Mobile App Sec Verification Standard
(MASVS) which is intended to be used when the application is ready to be released and provides a security check-
list as the baseline for the pentesting activities. The MSTG describes how to verify each security requirement laid
out in the MASVS. The MASVS defines two security verification levels (MASVS-L1 and MASVS-L2), as well as a set
of reverse engineering resiliency requirements (MASVS-R). MASVS-L1 contains generic security requirements that
are recommended for all mobile apps, while MASVS-L2 should be applied to apps handling highly sensitive data.
MASVS-R covers additional protective controls that can be applied if preventing sophisticated client-side threats is a
design goal.

Fulfilling the requirements in MASVS-L1 results in a secure app that follows security best practices and doesn’t
suffer from common vulnerabilities. MASVS-L2 adds additional defense-in-depth controls such as SSL pinning,
resulting in an app that is resilient against more sophisticated attacks - assuming the security controls of the mobile
operating system are intact and the end user is not viewed as a potential adversary. Fulfilling all, or subsets of, the
software protection requirements in MASVS-R helps impede specific client-side threats where the end user is mali-
cious and/or the mobile OS is compromised.

In summary, the MASVS splits the security model of the mobile app in three layers:

MASVS-L1 covers generic security requirements that the mobile app should comply with, thus if followed it means
the application is following the best recommended security practices and doesn’t suffer from common security
issues in it’s code base.

MASVS-L2 provides defense in depth to make the mobile more resilient against more sophisticated attacks, for
example that certificate pinning controls are in place to try to prevent the occurrence of MitM attacks.

MASVS-R is about adding security measures intended to protect from the client-side attack vectors that MASVS-L2
is not able to mitigate, like running in a compromised device where its user may be or not the attacker. This layer of
defense will consist of mechanisms to detect/prevent/stop at runtime the use of root/jailbroken devices, modified
mobile apps, reverse engineering and code instrumentation.

https://owasp.org/www-project-mobile-security-testing-guide/
https://mobile-security.gitbook.io/mobile-security-testing-guide/
https://mobile-security.gitbook.io/masvs/
https://github.com/OWASP/owasp-masvs
https://github.com/OWASP/owasp-masvs/blob/master/Document/0x03-Using_the_MASVS.md

WHITE PAPER: The Threats to Mobile Apps and APIs

page 18 of 18©2022 CriticalBlue Limited. All rights reserved. Version 3.1

Source: github:owasp-masvs

• The other relevant OWASP projects and their associated resources deal primarily with Attack Surface 5 (Service
and API Integrity) but without any specific content on the challenges of Mobile App API access in particular.

• OWASP API Security - https://owasp.org/www-project-api-security/ focuses on strategies and solutions to
understand and mitigate the unique vulnerabilities and security risks of Application Programming Interfaces
(APIs) publishes and maintains a list of the top ten API vulnerabilities.

• OWASP Top 10 - https://owasp.org/www-project-top-ten/ The OWASP Top 10 is a standard awareness doc-
ument for developers and web application security. It represents a broad consensus about the most critical
security risks to web applications, most of which can be exploited via APIs.

https://github.com/OWASP/owasp-masvs/blob/master/Document/images/masvs-levels-new.jpg
https://owasp.org/www-project-api-security/
https://owasp.org/www-project-top-ten/

